AN EFFICIENT SYNTHESIS OF 2, 4, 6 TRI ARYL PYRIDINES USING AMMONIUM CARBONATE IN WATER UNDER SEALED CONDITIONS

K. Balaji*1, V. Tejeswara Rao1, Anjali Jha2, Abdul Razzak3, T. V. S. P. V. Satya Guru4

1*Department of Chemistry, MVR College, Visakhapatnam, Andhra Pradesh-530045, India.
2Department of Chemistry, Gitam University, Visakhapatnam, Andhra Pradesh-530045, India.
3Department of Chemistry, MVGR College of Engineering, Vijiyangaram, Andhra Pradesh-535005, India.
4Vignan’s Institute of Information Technology (A), Duvvada, Visakhapatnam-530049, Andhra Pradesh, India.

ABSTRACT
Krohnke 2, 4, 6-Triarylpyridines (TAPs) are efficiently synthesized by using various reactants with ammonium carbonate in water under sealed conditions. Using this protocol, Krohnke pyridines (4a-4q) are prepared in higher yields and purities than with other methodologies without the use of a catalyst or an organic solvent.

KEYWORDS
Sealed conditions, Ammonium carbonate, Water and 2, 4, 6-Triarylpyridines.

INTRODUCTION
Organic transformations in water without using hazardous reagents or solvents are of considerable interest, because of its environmental acceptability, abundance and low cost1. Pyridines derivatives represent an important class of six-membered heterocycles widespread in a number of biologically active natural products2 and pharmaceutical drugs3. They have noticeable applications in many fields of chemistry4. In particular 2, 4, 6-triarylpyridine is of immense interest because of its unique position in medicinal chemistry5, such as topoisomerase I and II inhibitory activity, cytotoxicity6 against several human cancer cell lines7 antitumor activity8. Recent studies providing impetus for further studies in
utilizing this scaffold in new therapeutic drug classes9.

In addition, the excellent thermal stabilities of these pyridines have instigated a growing interest for their use as monomeric building blocks useful in the development of thin film vortex fluidic device10, building blocks for the preparation of chiral ligands11. TAPs show promising potential as scintillators that will allow liquid scintillation counting to be carried out at high efficiency in strongly acidic solution and new materials with important photo-or electrochemical properties12. Some examples are used as pharmaceuticals, dyes, additives, agrochemicals, and also in qualitative and quantitative analyses13. Moreover, they are prominent synthons in supramolecular chemistry, with their \(\pi\)-stacking ability along with directional H-bonding capacity14. In addition, the excellent thermal stabilities of these pyridines have gained considerable interest for their use as monomeric building blocks in thin films and organometallic polymers15.

Traditionally TAPs have been synthesized using the reaction of N-phenacylpyridinium salts with \(\alpha, \beta\) - unsaturated ketones in the presence of NH\textsubscript{4}OAc16. Recently, several new and improved methods and procedures have been developed for the synthesis of TAP’s all of these methods use NH\textsubscript{4}OAc as a source of ammonia which include arylation of methylthiopyridines via Ni-induced Grignard reactions reactions of phenacylidene dimethylsulfurane with chalcones and NH\textsubscript{4}OAc17, pyrolysis of 1-vinyl-1, 2-dihydropyridines18, reactions of a-ketoketene dithioacetals with methyl ketones in the presence of NH\textsubscript{4}OAc19, additions of lithiated b-enaminophosphonates to chalcones20, reactions of a-benzotriazolyl ketones with a, b-unsaturated ketones and NH\textsubscript{4}OAc21, and solvent-free reactions22a,b between acetophenones, aryl aldehydes, and NH\textsubscript{4}OAc for the synthesis of tri-aryl pyridines using NaOH in PEG-40023. There have been plethora of catalysts used for this reactions such as PEG-300 along with NaOH26, catalytic amount of acetic acid27, HClO\textsubscript{4} - SiO\textsubscript{2}28, preyssler type heteropoly acid H\textsubscript{14}[NaP\textsubscript{5}W\textsubscript{3}O\textsubscript{11}O\textsubscript{4}]29, wet 2, 4, 6-trichloro-1, 3, 5-triazine (TCT)30, 3-methyl-1-(4-sulfonylbutyl) imidazolium hydrogen sulfate [HO\textsubscript{3}S(CH\textsubscript{2})\textsubscript{3}MIM] [HSO\textsubscript{4}] and a Bronsted acidic ionic liquid31, Bismuth triflate32. But, most of these protocols are having one or more drawbacks, thus leaving room for further improvements.

EXPERIMENTAL

General procedure for the preparation of 2, 4, 6-triarylpyridines

A mixture of the acetophenone (2.1mmol), aromatic aldehyde (1.2mmol) and anhydrous ammonium carbonate (2mmol) in water was heated in a sealed tube at 150°C for 4 h. The reaction was monitored by TLC (Thin layer chromatography) n-hexane-EtOAc (6:4). After completion of the reaction, reaction mixture was cooled to room temperature and the residue was eluted by using n-hexane-EtOAc (5:1) through column chromatography. The residue was recrystallized from absolute EtOH.

RESULTS AND DISCUSSION

We were interested in studying synthesis of 2, 4, 6 tri aryl pyridines using ammonium carbonate in aqueous media using ammonium carbonate with the aim to develop an operationally simple method for the synthesis of a large range of TAPs. Ammonium carbonate is a low melting (58°C) and less toxic (LD\textsubscript{50} = 1497mg/kg) solid. In aqueous media it decomposes to produce two moles of ammonia. Under solvent-free conditions the reaction proceeded in a considerably lower yield due to sublimation of ammonium carbonate. There was no significant change on the results observed using high equiv (0.5-1) of ammonium carbonate, suggests that hydrogen bonding, mild buffered pH of the reaction media and the assistance of water to break down (NH\textsubscript{4})\textsubscript{2}CO\textsubscript{3} may all be responsible for acceleration of the reaction rate.

Available online: www.uptodateresearchpublication.com
Although the preparation of 2, 4, 6 tri aryl pyridines has been known there is no report on the effect of the ammonia source on this reaction (Scheme No.1). Thus, we studied a model four-component condensation of acetophenone, benzaldehyde and an ammonium salt (mole ratio = 2:1:1) in water under different conditions (Table No.1). We were pleased to find that among the conditions screened, the corresponding TAPs was obtained quantitatively with (NH₄)₂CO₃ at 80-150°C in water (entry 10) in the absence of any catalyst. This process is economically viable than the previously reported procedures.

Isolated yields

The optimized conditions required heating with 35 mol % of ammonium carbonate in water for four hours at 140-150°C under the sealed conditions. In order to study the scope and generality of the ammonium carbonate-catalyzed 2, 4, 6 tri aryl pyridines synthesis in water, a series of TAPs were synthesized from the substituted aromatic aldehydes, and aromatic ketones (Scheme No.2). In all cases, the desired products were isolated in excellent yields (Table No.2).

The optimized reaction conditions further extended to the condensation of other aldehydes with aromatic ketone (Scheme No.2, 4a-4q), chalcone with aromatic ketone (Scheme No.3), chalcone and ammonium carbonate (Scheme No.4), at 80-150°C. Aromatic aldehydes bearing both electron-deficient and electron-rich substituent have afforded the desired TAPs in excellent yields.

SPECTRAL DATA

2, 4, 6-Triphenylpyridine (4a)

White solid, M.P. 135-137°C, IR (KBr, cm⁻¹): 3069, 1597, 1552, 1494, 1440, 1398, 1178, 1074, 1027, 867, 759, 692. ¹H NMR (300 MHz, DMSO-d₆): δ (ppm): 8.21(2H, d, J = 7.2 Hz, H Ar); 7.93(2H, s, H Ar); 7.79(2H, d, J = 7.2 Hz, H Ar); 7.53(2H, d, J = 7.4 Hz, H Ar); 7.40-7.34 (9H, m, H Ar). ¹³C NMR (75 MHz, CDCl₃): δ (ppm): 157.2; 150.0; 139.8; 139.2; 129.8; 129.3; 128.9; 127.7; 127.2; 117.8. HRMS [M+H]^+: 308.1214; Found, %: C 89.78; H 5.51; N 4.50. C₂₃H₁₇N. Calculated, %: C 89.87; H 5.57; N 4.56.

Available online: www.uptodateresearchpublication.com

4-(4-Chlorophenyl)-2, 6-diphenylpyridine (4b)

White solid, M.P. 127-128°C, IR (KBr, cm⁻¹): 3061, 1599, 1543, 1489, 1449, 1414, 1384, 1237, 1090, 1013, 825, 773, 692. ¹H NMR (300 MHz, DMSO-d₆): δ (ppm) 8.59 (2H, d, J = 7.2 Hz, H Ar); 8.53 (2H, d, J = 7.8 Hz, H Ar); 8.14 (2H, s, H Ar); 7.84 (2H, d, J = 7.8 Hz, H Ar); 7.66 (2H, d, J = 7.8 Hz, H Ar); 7.56-7.52 (6H, m, H Ar). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm): 157.8; 149.0; 139.0; 136.1; 134.6; 129.8; 129.6; 129.5; 129.0; 117.0. HRMS [M+H]^+: 342.4899, Found, %: C 80.32; H 4.55; N 4.01. C₂₃H₁₉ClN. Calculated, %: C 80.81; H 4.72; N 4.10.

4-(2-Fluorophenyl)-2, 6-diphenylpyridine (4c)

White solid, M.P. 122-123°C, IR (KBr, cm⁻¹): 157.4; 158.3; 152.3; 138.8; 135.2; 132.2; 130.0; 129.8; 128.0; 117.0. HRMS [M+H]^+: 338.3823, Found, %: C 84.53; H 4.96; N 4.30.

4-(3-Methoxyphenyl)-2, 6-diphenylpyridine (4d)

White solid, M.P. 122-123°C, IR (KBr, cm⁻¹): 3069, 2936, 1598, 1547, 1486, 1444, 1398, 1285, 1255, 1209, 1171, 1037, 782, 775, 692. ¹H NMR (300 MHz, DMSO-d₆): δ (ppm): 8.13 (4H, d, J = 7.5 Hz, H Ar); 7.94 (4H, d, J = 7.5 Hz, H Ar); 7.34-7.33 (4H, s, H Ar); 7.09-7.04 (4H, d, J = 7.9 Hz, H Ar). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm): 160.0; 157.4; 149.2; 139.3; 130.9; 129.2; 127.9; 126.9; 125.2; 124.0; 118.1; 116.4; HRMS [M+H]^+: 338.3823, Found, %: C 84.53; H 4.75; N 4.23. C₂₃H₁₆FN. Calculated, %: C 84.90; H 4.96; N 4.30.
= 6.3 Hz, H Ar); 2.35 (3H, s, CH₃). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm): 157.0; 149.9; 139.8; 135.4; 130.3; 129.8; 129.3; 127.5; 127.1; 116.4; 21.5. HRMS [M+H]+: 322.1726, Found, %: C 89.52; H 5.78; N 4.28. C₂₃H₁₉N. Calculated, %: C 89.68; H 5.96; N 4.36.

4-(4-Methoxyphenyl)-2, 6-diphenylpyridine (4f)
White solid, M.P. 98-100°C, IR (KBr, cm⁻¹): 3035, 2936, 1596, 1547, 1486, 1444, 1398, 1285, 1255, 1204, 1171, 1037, 750, 691. ¹H NMR (300 MHz, DMSO-d₆): δ (ppm): 8.01 (4H, d, J = 6.9 Hz, H Ar); 7.87 (2H, d, J = 7.2 Hz, H Ar); 7.35 (4H, d, J = 6.9 Hz, H Ar); 7.319-7.286 (2H, s, H Ar); 6.88 (4H, d, J = 7.2 Hz, H Ar); 3.76 (3H, s, OCH₃). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm): 160.4; 157.1; 150.7; 139.9; 139.4; 130.3; 129.8; 129.3; 127.1; 120.9; 116.9; 115.4; 113.4; 53.5. HRMS [M+H]+: 338.1501, Found, %: C 85.12; H 5.24; N 4.02. C₂₃H₁₀NO. Calculated, %: C 85.43; H 5.68; N 4.15.

N, N-Dimethyl-4-(2, 6-diphenylpyridin-4-yl)benzenamine (4g)
Yellow solid, M.P. 137-139°C, IR (KBr, cm⁻¹): 3037, 2936, 1598, 1525, 1489, 1442, 1398, 1352, 1233, 1199, 1168, 1066, 1023, 818, 773, 695. ¹H NMR (300 MHz, DMSO-d₆): δ (ppm): 8.02 (2H, s, H Ar); 7.77 (4H, d, J = 7.2 Hz, H Ar); 7.52 (2H, d, J = 7.2 Hz, H Ar); 7.22-7.11 (6H, m, H Ar); 6.8 (2H, d, J = 7.2 Hz, H Ar); 3.76 (3H, s, OCH₃). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm): 155.4; 152.2; 150.5; 136.2; 129.9; 129.0; 128.7; 127.0; 118.8; 114.4; 42.2. HRMS [M+H]+: 338.1501, Found, %: C 85.24; H 6.21; N 7.87. C₂₃H₂₂N₂. Calculated, %: C 85.68; H 6.33; N 7.99.

2, 6-Bis (4-chlorophenyl)-4-phenylpyridine (4h)
White solid, M.P. 177-178°C, IR (KBr, cm⁻¹): 3052, 2928, 1602, 1543, 1512, 1489, 1426, 1381, 1291, 1247, 1177, 1088, 1011, 824. ¹H NMR (300 MHz, DMSO-d₆): δ (ppm): 7.97 (4H, d, J = 6.3 Hz, H Ar); 7.86 (2H, s, H Ar); 7.22-7.42 (5H, m, H Ar); 7.14 (4H, d, J = 6.3 Hz, H Ar); 2.23 (6H, s, CH₃). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm): 158.1; 150.7; 138.2; 137.2; 132.3; 129.8; 129.3; 128.5; 126.9; 117.6; 19.15. HRMS [M+H]+: 336.1666, Found, %: C 89.28; H 6.17; N 4.02. C₂₃H₁₂Cl₂N. Calculated, %: C 89.51; H 6.31; N 4.18.

4-(4-Pyridinyl)-2, 6-diphenylpyridine (4i)
Colorless crystals, M.P. 187-188°C, IR (KBr, cm⁻¹): 3050, 1562, 1544, 1450, 1413, 1384, 1239, 1174, 1078, 1015, 829, 678. ¹H NMR (300 MHz, CDCl₃): δ (ppm): 8.76 (2H, d, J = 4.7 Hz, 2CH); 8.18 (4H, d, J = 7.5 Hz, 4CH); 7.84 (2H, s, 2CH); 7.61 (2H, d, J = 7.4 Hz, 2CH); 7.51 (4H, d, J = 7.4 Hz, 4CH), 7.45 (2H, d, J = 7.4 Hz, 2CH). ¹³C NMR (75 MHz, CDCl₃): 157.91; 150.52; 147.31; 146.49; 139.00; 129.37; 127.88; 127.09; 121.65; 116.58. HRMS [M+H]+: 309.5263, Found, %: C 85.23; H 5.09; N 8.98. C₂₂H₁₆N₂. Calculated, %: C 85.69; H 5.23; N 9.08.

4-(Furan-2-yl)-2, 6-diphenylpyridine (4j)
Light-brown solid, M.P. 167-169°C, IR (KBr, cm⁻¹): 3058, 1606, 1541, 1487, 1454, 1414, 1244, 1158, 1073, 1010, 868, 772, 690. ¹H NMR (300 MHz, DMSO-d₆): δ (ppm): 8.30 (2H, d, J = 7.6 Hz, H Ar); 8.20 (2H, d, J = 7.5 Hz, H Ar); 8.14 (2H, s, H Ar); 7.96 (1H, s, H Ar); 7.57-7.47 (7H, m, H Ar); 6.75 (1H, d, J = 8.1 Hz, H Ar). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm): 157.0; 151.4; 145.2; 139.6; 130.0; 129.8; 129.2; 127.2; 113.1; 113.0; 110.9. HRMS [M+H]+: 298.4825, Found, %: C 84.65; H 4.98; N 4.36. C₂₁H₁₆NO. Calculated, %: C 84.82; H 5.08; N 4.71.

2, 6-Bis (4-Methylphenyl)-4-phenylpyridine (4k)
White solid, M.P. 158-159°C, IR (KBr, cm⁻¹): 3052, 2928, 1602, 1543, 1512, 1489, 1426, 1381, 1291, 1247, 1177, 1088, 1011, 824. ¹H NMR (300 MHz, DMSO-d₆): δ (ppm): 7.97 (4H, d, J = 6.3 Hz, H Ar); 7.86 (2H, s, H Ar); 7.22-7.42 (5H, m, H Ar); 7.14 (4H, d, J = 6.3 Hz, H Ar); 2.23 (6H, s, CH₃). ¹³C NMR (75 MHz, DMSO-d₆): δ (ppm): 158.1; 150.7; 138.2; 137.2; 132.3; 129.8; 129.3; 128.5; 126.9; 117.6; 19.15. HRMS [M+H]+: 336.1666, Found, %: C 89.28; H 6.17; N 4.02. C₂₃H₁₂Cl₂N. Calculated, %: C 89.51; H 6.31; N 4.18.
(125.8 MHz, CDCl$_3$): $d = 116.9, 124.3, 127.1, 128.1, 128.8, 129.4$ (6CH), 139.0, 145.4, 147.8, 148.2. HRMS $[M+H]^+$: 353.3627, Found, %: C 78.05; H 7.83. C$_{23}$H$_{16}$N$_2$O$_2$. Calculated, %: C 78.39; H 4.58; N 7.95.

2, 6-Bis (4-methylphenyl)-4-(4-chlorophenyl) pyridine (4m)
White solid, M.P. 198-200°C, IR (KBr, cm$^{-1}$): 3062, 2932, 1595, 1490, 1460, 1411, 1383, 1265, 1211, 1176, 1089, 1012, 833, 787. 1H NMR (300 MHz, DMSO-d_6), δ (ppm): 8.40 (2H, d, $J = 7.5$ Hz, H Ar); 8.31 (2H, d, $J = 7.4$ Hz, H Ar); 8.20 (2H, s, H Ar); 7.62 (2H, d, $J = 7.6$ Hz, H Ar); 7.55-7.52 (4H, m, H Ar); 7.42 (1H, d, $J = 7.3$ Hz, H Ar); 7.05 (1H, d, $J = 7.4$, H Ar); 2.88 (6H, s, CH$_3$). 13C NMR (75 MHz, DMSO-d_6), δ, (ppm): 161.2; 155.2; 152.0; 138.9; 134.3; 132.9; 130.3; 129.3; 129.0; 119.7; 118.0; 114.8; 111.1; 15.8. $[M+H]^+$: 390.2140, Found, %: C 81.02; H 5.39; N 3.69. C$_{25}$H$_{20}$ClN. Calculated, %: C 81.18; H 5.45; N 3.79.

4-(4-Nitrophenyl)-2, 6-bis (4-methylphenyl) pyridine (4n)
Colorless crystals, M.P. 143-144°C, IR (KBr, cm$^{-1}$): 3062, 2932, 1595, 1490, 1460, 1411, 1383, 1265, 1210, 1175, 1085, 1011, 830, 785; 1H NMR (300 MHz, DMSO-d_6), δ (ppm): 8.31 (d, $J = 8.4$ Hz, 2H), 7.88 (d, $J = 7.2$ Hz, 4H), 7.76 (2H, s, H Ar), 7.61 (d, $J = 8.4$ Hz, 2H), 6.92 (2H, s, H Ar), 2.86 (6H, s, CH$_3$). 13C NMR (125.8 MHz, DMSO-d_6): δ (ppm): 150.2, 146.3, 139.2, 129.2, 129.0, 119.7; 118.0; 114.8; 111.1; 15.8. $[M+H]^+$: 381.2140, Found, %: C 81.02; H 5.39; N 3.69. C$_{23}$H$_{16}$N$_2$O$_2$. Calculated, %: C 81.18; H 5.45; N 3.79.

4, 4', 4''-(pyridine-2, 4, 6-triyl) triphenol (4p)
Yellow solid, M.P. 283-284°C, IR (KBr, cm$^{-1}$): 3294, 1708, 1513, 1393, 1234, 1175, 831; 1H NMR (300MHz, DMSO-d_6): δ (ppm) 9.82 (s, 1H, OH), 9.73 (s, 2H, OH), 8.12 (d, $J = 8.7$ Hz, 4H), 7.87 (s, 2H, H Ar), 7.44 (d, $J = 8.4$ Hz, 2H), 6.90-6.84 (m, 6H); 13C NMR (75MHz, DMSO-d_6): δ (ppm) 158.2, 158.1, 156.4, 148.9, 130.1, 128.9, 128.6, 128.0, 115.9, 115.4, 113.5; $[M+H]^+$: 356.1196, Found, %: C 77.35; H 4.55; N 3.68. C$_{23}$H$_{17}$NO$_3$. Calculated, %: C 77.73; H 4.82; N 3.94.

4-(2, 6-diphenylpyridin-4-yl) phenol (4q)
Yellow solid, M.P. 206-208°C, IR (KBr, cm$^{-1}$): 3426, 2358, 1560, 1512, 1393, 835, 685. 1H NMR (300MHz, DMSO-d_6): δ (ppm): 9.87 (s, 1H, OH), 8.31 (d, $J = 6.9$ Hz, 4H), 8.12 (s, 2H, H Ar), 7.86 (d, $J = 7.2$ Hz, 2H), 7.57-7.42 (m, 6H), 6.92 (d, $J = 6.9$ Hz, 2H); 13C NMR (75MHz, DMSO-d_6): δ (ppm) 158.2, 157.3, 150.2, 139.8, 130.4, 129.4, 128.0, 128.4, 127.9, 117.3, 116.2; $[M+H]^+$: 324.0928, Found, %: C 85.23; H 5.15; N 4.19. C$_{23}$H$_{17}$NO. Calculated, %: C 85.42; H 5.30; N 4.33.

Available online: www.uptodateresearchpublication.com
Table No.1: Catalyst-free synthesis of 2, 4, 6 Tri aryl pyridines with various ammonium salts in water under sealed conditions

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ammonium salt</th>
<th>Solvent</th>
<th>Time(h)</th>
<th>Yielda (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NH₄OAc</td>
<td>H₂O</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>NH₄Cl</td>
<td>H₂O</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>NH₂CONH₂</td>
<td>H₂O</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>(NH₄)₂SO₄</td>
<td>H₂O</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>NH₄NO₃</td>
<td>H₂O</td>
<td>5</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>NH₄VO₃</td>
<td>H₂O</td>
<td>5</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>NH₄HCO₃</td>
<td>H₂O</td>
<td>5</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>(NH₄)₆Mo₇O₂₄</td>
<td>H₂O</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>(NH₄)₂[Ce(NO₃)₆]</td>
<td>H₂O</td>
<td>6</td>
<td>56</td>
</tr>
<tr>
<td>10</td>
<td>(NH₄)₂CO₃</td>
<td>H₂O</td>
<td>4</td>
<td>95</td>
</tr>
<tr>
<td>11</td>
<td>(NH₄)₂CO₃</td>
<td>EtOH</td>
<td>6</td>
<td>85</td>
</tr>
<tr>
<td>12</td>
<td>(NH₄)₂CO₃</td>
<td>H₂O/EtOH (50:50)</td>
<td>5</td>
<td>88</td>
</tr>
<tr>
<td>13</td>
<td>(NH₄)₂CO₃</td>
<td>None</td>
<td>6</td>
<td>62</td>
</tr>
</tbody>
</table>

Table No.2: Synthesis of 2, 4, 6 Tri aryl pyridines under sealed conditions with ammonium carbonate as source of ammonia

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar</th>
<th>Ar¹</th>
<th>Compound</th>
<th>Yielda %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>4a</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>α</td>
<td>4b</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>f</td>
<td>4c</td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>H₃CO</td>
<td>4d</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>H₃C</td>
<td>4e</td>
<td>96</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>H₃CO</td>
<td>4f</td>
<td>96</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>N</td>
<td>4g</td>
<td>95</td>
</tr>
<tr>
<td>8</td>
<td>α</td>
<td></td>
<td>4h</td>
<td>94</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>N</td>
<td>4i</td>
<td>96</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>4j</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>H₅C</td>
<td></td>
<td>4k</td>
<td>91</td>
</tr>
</tbody>
</table>
Scheme No.1: Catalyst-free synthesis 2, 4, 6 Triaryl pyridines with various ammonium salts in water under

\[
2 \text{ArCOCH}_3 + \text{Ammonium salt} + \text{PhCHO} \xrightarrow{\text{Solvent}} \\text{2, 4, 6 Triaryl pyridines (4a-4q)}
\]

Scheme No.2: Synthesis of 2, 4, 6 Tri aryl pyridines under sealed conditions with ammonium carbonate as source of ammonia

\[
2 \text{ArCOMe} + \text{Ar}^1\text{CHO} + \text{NH}_4(\text{CO}_3)_2 \xrightarrow{\text{Tap water, 150 °C Seal tube}} \text{4a-4q}
\]

Scheme No.3: Two component 2, 4, 6 Tri aryl pyridines from chalcone and ammonium carbonate under sealed conditions

Available online: www.uptodateresearchpublication.com October – December 363
Scheme No.4: Three component 2, 4, 6 Tri aryl pyridines from chalcone acetophenone and with ammonium carbonate under sealed conditions

Figure No.1: 1H NMR Spectra of 2, 4, 6-Triphenylpyridine (4a)

Figure No.2: 13C NMR Spectra of 2, 4, 6-Triphenylpyridine (4a)

Figure No.3: HRMS Spectra of 2, 4, 6-Triphenylpyridine (4a)
Figure No.4: 1H NMR Spectra of 4-(4-Chlorophenyl)-2, 6-diphenylpyridine (4b)

Figure No.5: 13C NMR Spectra of 4-(4-Chlorophenyl)-2, 6-diphenylpyridine (4b)

Figure No.6: HRMS Spectra of 4-(4-Chlorophenyl)-2, 6-diphenylpyridine (4b)

Figure No.7: 1H NMR Spectra of 4-(4-Methylphenyl)-2, 6-diphenylpyridine (4e)
Figure No.8: 13C NMR Spectra of 4-(4-Methylphenyl)-2, 6-diphenylpyridine (4e)

Figure No.9: HRMS Spectra of 4-(4-Methylphenyl)-2, 6-diphenylpyridine (4e)

Figure No.10: 1H NMR Spectra of N, N-Dimethyl-4-(2, 6-diphenylpyridin-4-yl) benzenamine (4g)

Figure No.11: 13C NMR Spectra of N, N-Dimethyl-4-(2, 6-diphenylpyridin-4-yl) benzenamine (4g)
Figure No.12: HRMS Spectra of N, N-Dimethyl-4-(2, 6-diphenylpyridin-4-yl)benzenamine (4g)

Figure No.13: 1H NMR Spectra of 2, 6-Bis (4-Methylphenyl)-4-phenylpyridine (4k)

Figure No.14: 13C NMR Spectra of 2, 6-Bis (4-Methylphenyl)-4-phenylpyridine (4k)

Figure No.15: HRMS Spectra of 2, 6-Bis (4-Methylphenyl)-4-phenylpyridine (4k)
CONCLUSION
We have developed an efficient and facile method for the synthesis of 2,4,6 tri arylpyridines. Ammonium carbonate as a source of ammonia, water media, use of simple and readily available starting materials, excellent yields short reactions times are the main advantages of this reaction.

ACKNOWLEDGEMENT
The authors wish to express their sincere gratitude to Department of Chemistry, Gitam University, Visakhapatnam, Andhra Pradesh 530045, India for providing necessary facilities to carry out this research work.

CONFLICT OF INTEREST
We declare that we have no conflict of interest.

Figure No.16: 1H NMR Spectra of 4-(2, 6-diphenylpyridin-4-yl) phenol (4q)

Figure No.17: 13C NMR Spectra of 4-(2, 6-diphenylpyridin-4-yl) phenol (4q)

Figure No.18: HRMS Spectra of 4-(2, 6-diphenylpyridin-4-yl) phenol (4q)
BIBLIOGRAPHY

(c) Sweetman B A,

22. (a) Shabnam Mahernia, Mehdi Adib Mohammad Mahdavi, Meisam Nosrati. A solvent-free reaction between acetophenone oximes and epoxy styrenes: an efficient Available online: www.uptodateresearchpublication.com

Please cite this article in press as: Balaji B et al. An efficient synthesis of 2, 4, 6 tri aryl pyridines using ammonium carbonate in water under sealed conditions, *Asian Journal of Research in Chemistry and Pharmaceutical Sciences*, 8(4), 2020, 357-373.